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a b s t r a c t

A common feature of many modern technologies used in proteomics – including nuclear magnetic res-
onance imaging and mass spectrometry – is the generation of large amounts of data for each subject in
an experiment. Extracting the signal from the background noise, however, poses significant challenges.
One important part of signal extraction is the correct identification of the baseline level of the data.
In this article, we propose a new algorithm (the “BXR algorithm”) for baseline estimation that can be
directly applied to different types of spectroscopic data, but also can be specifically tailored to different
technologies. We then show how to adapt the algorithm to a particular technology – matrix-assisted
ourier transform ion cyclotron resonance
atrix-assisted laser desorption/ionization

pectroscopy

laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry – which is
rapidly gaining popularity as an analytic tool in proteomics. Finally, we compare the performance of our
algorithm to that of existing algorithms for baseline estimation.

The BXR algorithm is computationally efficient, robust to the type of one-sided signal that occurs in
many modern applications (including NMR and mass spectrometry), and improves on existing baseline
estimation algorithms. It is implemented as the function baseline in the R package FTICRMS, available

ensiv
either from the Compreh

. Introduction

A common feature of many modern technologies used in pro-
eomics – including nuclear magnetic resonance imaging and mass
pectrometry – is the generation of large amounts of data for each
ubject in an experiment. Extracting the signal from the back-
round noise, however, poses significant challenges. One important
art of signal extraction is the correct identification of the baseline

evel of the data. In this article, we first generalize an algorithm of
i and Rocke [1] which was developed for NMR baseline correction
nd show how it can be applied to data from generic spectro-
copic technologies. We also indicate how it can be adapted to
he unique qualities of different technologies and illustrate this
y adapting it to a specific technology: matrix-assisted laser des-
rption/ionization Fourier transform ion cyclotron resonance mass
pectrometry (MALDI FT-ICR MS). Finally, we compare the perfor-
ance of our algorithm to that of existing algorithms for baseline

stimation.
∗ Corresponding author. Tel.: +1 510 282 6715.
E-mail address: don.barkauskas@curesearch.org (D.A. Barkauskas).

003-2670/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2009.10.043
e R Archive Network (http://www.r-project.org/) or from the first author.
© 2009 Elsevier B.V. All rights reserved.

2. Methods

2.1. What is a baseline?

There are different possible interpretations of what exactly a
“baseline” is in spectroscopic analysis. If it is assumed that the sig-
nal is all positive standing out from a (theoretically) zero baseline
level, then some kind of (smoothed) running minimum would be an
appropriate baseline. This is the approach taken in software pack-
ages such as Cromwell [2], LCMS-2D [3], LIMPIC [4], PrepMS [5], and
PROcess [6]. Alternatively, if the noise is assumed to fluctuate about
a baseline level (like in an independent, identically distributed
(iid) normal case), then some measure of center (median, mean,
etc.) is more appropriate. This is the approach taken in software
packages such as msInspect [7]. Software packages such as LMS
[8] have options to compute either of these types of baselines.
(A third common type of analysis is continuous wavelet analysis,
which does not have a separate baseline correction step as such;
the baseline is automatically removed as part of the wavelet trans-
formation. This is the approach taken in software packages such as
MassSpecWavelet [9] and OpenMS [10].)
The Xi–Rocke algorithm uses the second interpretation of base-
line (measure of center of the noise), and as explained in Section 3,
this is the appropriate way to analyze (in particular) MALDI FT-ICR
MS spectra, and is arguably appropriate in other applications. In the
remainder of this article we will concentrate on this type of base-

http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
http://www.r-project.org/
mailto:don.barkauskas@curesearch.org
dx.doi.org/10.1016/j.aca.2009.10.043
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ine and compare our algorithm to LMS. (msInspect was designed
or liquid chromatography mass spectrometry and is not directly
omparable to our current algorithm.)

.2. The BXR algorithm

Suppose that the data have the form (xt, yt) for t = 1, . . . , n.
i and Rocke [1] proposed using the score function in Eq. (1) to
stimate the baseline for NMR data.

({bt}) =
n∑

t=1

bt − A1

n−1∑
t=2

(bt−1 − 2bt + bt+1)2 − A2

n∑
t=1

[(bt − yt)+]2

(1)

ere, z+ ≡ max{z, 0}, bt represents the value of the baseline at
he t-th data point, and A1 and A2 are positive constants to be
etermined. We maximize this score function over all possible
alues of {bt} to find the baseline.1 The first term in F represents the
verall height of the baseline. The last term is negative only when
he baseline is above the data points, so it penalizes baseline values
hat lie too far above the data and helps ensure that the estimated
aseline will go through the middle of the data. The middle term

s a measure of the curvature of the baseline, so maximizing F will
revent the estimated baseline from curving too sharply.

To make the analysis easier, we change notation. Let b =
b1, . . . , bn)′ – where the prime symbol represents the transpose
f a vector or matrix – be a column vector containing the values
f the baseline, and similarly let y = (y1, . . . , yn)′ contain the mea-
ured values of the spectrum. Let 1(S) be the indicator function for
he set S and let 1 be an n × 1 column vector of ones. Finally, it will be
seful to allow A1 and A2 to vary with t, taking values {A1,t}n−1

t=2 and
A2,t}n

t=1, respectively. We can then rewrite Eq. (1) in vector/matrix
otation as

(b) = 1′b − b′ �2b − (b − y)′N(b − y), (2)

here N is an n × n diagonal matrix with entries A2,t1(bt > yt), and
2 = M ′

2A1M2, where

2 =

⎡
⎢⎢⎣

1 −2 1 0 0 0
0 1 −2 1 0 0 · · ·
0 0 1 −2 1 0

...
. . .

⎤
⎥⎥⎦ (3)

s an (n − 2) × n matrix and A1 is an (n − 2) × (n − 2) diagonal
atrix with entries A1,t . We will refer to the process of maximizing

his modified score function with respect to the baseline b as the
arkauskas–Xi–Rocke (BXR) algorithm.

Note that the only change that the BXR algorithm makes over
i and Rocke’s original algorithm is allowing A1 and A2 to vary
ith t. This seemingly minor change has a profound impact on the

ffectiveness of the algorithm in the analysis of real-world data,
owever, as we show in Sections 2.3 and 3.

To maximize the function in Eq. (2), we calculate the gradient

nd Hessian:

∇F(b) = 1 − 2�2b − 2N(b − y)

[H(F)](b) = −2(�2 + N).

1 Note that the values {xt } do not appear in F; the score function assumes equally
paced data. Masses in MALDI FT-ICR spectra are not equally spaced, but the masses
re not directly measured. Instead, they are derived from measured frequencies
ia one of several non-linear transformations [11], and the frequencies are equally
paced. Thus, it will be appropriate to use our generalization of Xi and Rocke’s score
unction without modification in Section 3.
himica Acta 657 (2010) 191–197

Note that ∇F is continuous everywhere, and H(F) is continuous
except for jump discontinuities where bt = yt for some t. Also, �2
and N are both positive semidefinite (because b′�2b is a sum of
squares, and N is diagonal with nonnegative entries). Thus, �2 + N
is positive semidefinite and will be positive definite unless �2 and
N have a common null vector. But from the form �2 = M ′

2A1M2 =
(A1/2

1 M2)
′
A1/2

1 M2, we see that rank (�2) = rank(A1/2
1 M2) = n − 2,

and that x′�2x = 0 exactly when x is a linear combination of 1
and n ≡ (1, . . . , n)′. Furthermore, the only way that x′Nx = 0 is if
xt = 0 whenever bt > yt . But a nontrivial linear combination of
1 and n can have at most one zero entry, so in order for the
two matrices to have a common null vector, the baseline would
have to be below all but at most one point of the data. This will
clearly not happen in any reasonable data set, so we see that H(F)
is −2 times the sum of two positive semidefinite matrices that
have no common nullspace near any potential maximum. Thus,
we see that in any reasonable data set there will be a unique
maximum, since H(F) is negative semidefinite overall and nega-
tive definite near any (reasonable) potential maximum. We can
thus find the maximum by using Newton’s method using a rea-
sonable starting point (e.g., median (y) · 1), and the BXR algorithm
is virtually guaranteed to converge to the global maximum. (Tech-
nically, in most applications it will be a quasi-Newton’s method,
since the matrices �2 and N will depend non-trivially on b – the
quantity we are trying to estimate – and at each iteration we
will be using the currently estimated baseline to approximate b.
Thus, at each step we will only be approximating the gradient and
Hessian.)

2.3. Calculating A1,t and A2,t

Since the estimated baseline should be linear in the data (i.e., for
any constants m and c, if b corresponds to y, then mb + c should cor-
respond to my + c) and should be invariant under sampling more
or fewer points in the spectrum, Xi and Rocke argue that in their
original algorithm, A1 should have the form A1 = n4A∗

1/�, where �
is a normalizing constant based on y. (Xi and Rocke use an esti-
mate of the noise standard deviation; hence the use of � to denote
the constant.) In this article, we will allow the normalizing con-
stant � to vary with t as �t but leave the smoothing parameter
A∗

1 constant, giving us the form A1,t = n4A∗
1/�t . To decide on a rea-

sonable value of A∗
1, we use a result from Barkauskas et al. [12]

that the autocorrelation function (ACF) of a (non-stationary) time
series with E{(Yt+k − EYt+k)(Yt − EYt)} ≈ 0 for sufficiently large k
eventually oscillates around a value that is approximately equal to

Var(b)
Var(y)

. (4)

The optimal value of A∗
1 can then be estimated by calculating the

baseline b using different choices for A∗
1 and seeing which one gives

the best match to the ACF of the noise portion of the spectrum when
substituted into Eq. (4). (See Fig. 3 in Section 3 for an example of
this applied to a MALDI FT-ICR spectrum.)

In order to determine A2,t , we set the t-th coordinate of ∇F equal
to zero and assume that the baseline is flat, so that the middle term
drops out. Let Yt be the underlying random variable whose realiza-
tion is given by yt . We want to choose A2,t so that the function is
maximized at bt = g(Yt) for some function g. Thus, we want
0 = 1 − 2A2,t1(g(Yt) > yt)(g(Yt) − yt)

1 = 2A2,t(g(Yt) − yt)+

A2,t = 1
2(g(Yt) − yt)+

.
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ig. 1. Baseline estimation for simulated homoscedastic and heteroscedastic normal
ata using each of the two possible choices for A2,t from Section 2.3.

Of course, if g(Yt) were known, there would be no need to run the
lgorithm.) One obvious choice for g(Yt) is the expected value EYt .
or this choice of g(Yt) in the case that the data are assumed to be
id normal with variance �2, then we might choose

2,t = 1
2E{(EYt − Yt)+} = 1

2(�/
√

2� )
=

√
�/2

�
, (5)

hich recovers the result in Xi and Rocke [1].
We observe that for an arbitrary random variable Y , we have

{(EY − Y)+} = E|EY − Y |/2. Thus, if there is no information about
he distribution of the random variables {Yt}, then a reasonable
hoice might be A2,t = 1(b̂t > yt)/(b̂t − yt), where b̂t is the current
stimate of the baseline (i.e., the current estimate of EYt).

Fig. 1 shows the effect of these choices on the estimated base-
ine. We ran two simulations of 973,720 observations (the number
f observations in the “noise” spectrum analyzed in Section 3), each
ith x-coordinates equally spaced between zero and three and with
aseline given by y = sin(2�x). In the first simulation we used iid
(0, 1) noise added to the baseline, and in the second we used inde-
endent N(0, �2

x ) noise, where �x = 1 + 0.5 cos(4�x/3). We used
∗
1 = 10−11 and a constant value for �t estimated by dividing the
pectrum into 1024 (roughly) equal-sized sets of points, calculating
himica Acta 657 (2010) 191–197 193

the standard deviation of each set of points, then finding the aver-
age standard deviation using the estimate of center from Tukey’s
biweight with K = 9. We ran the BXR algorithm twice on each set
of simulated data, once with each choice of A2,t above.

For the data generated with homoscedastic noise, both ver-
sions of the BXR algorithm perform well, with only a small amount
of bias near the extreme values of the baseline (Fig. 1, top).
The major advantage here is that the algorithm that assumes
homoscedasticity runs much faster (using roughly 10–20% of the
computing time, depending on the exact convergence criterion
chosen). However, if the noise is actually heteroscedastic, then
assuming homoscedasticity causes the BXR algorithm to badly
mis-estimate the baseline—underestimating the baseline when the
variance is above average and overestimating the baseline when
the variance is below average (Fig. 1, bottom). The distribution-free
version of the BXR algorithm, however, still produces a result that
is almost indistinguishable from the true baseline. Thus, if the noise
can reasonably be assumed to be iid normal, then A2,t = �−1

√
�/2

is a good choice, but if the noise is heteroscedastic with unknown
distribution, then A2,t = 1(b̂t > yt)/(b̂t − yt) – where b̂t is the cur-
rent estimate of the baseline – should be preferred.

Of course, if information on the distribution of the noise for
a particular technology is available, it would be advantageous
to explore whether distribution-specific choices for A1,t and A2,t

would work better than the distribution-free choices. In the next
section, we will show how to do this for the particular case of MALDI
FT-ICR MS data.

3. Application to MALDI FT-ICR MS data

Matrix-assisted laser desorption/ionization Fourier transform
ion cyclotron resonance mass spectrometry (MALDI FT-ICR MS) is
a technique for high mass-resolution analysis of substances that is
rapidly gaining popularity as an analytic tool in proteomics. Typ-
ically in MALDI FT-ICR MS, a sample (the analyte) is mixed with
a chemical that absorbs light at the wavelength of the laser (the
matrix) in a solution of organic solvent and water. The resulting
solution is then spotted on a MALDI plate and the solvent is allowed
to evaporate, leaving behind the matrix and the analyte. A laser is
fired at the MALDI plate and is absorbed by the matrix. The matrix
breaks apart and transfers a charge to the analyte, creating the ions
of interest (with fewer fragments than would be created by direct
ablation of the analyte with a laser). The ions are guided with a
quadrupole ion guide into the ICR cell where the ions cyclotron
in a magnetic field. While in the cell, the ions are excited and
ion cyclotron frequencies are measured. The angular velocity, and
therefore the frequency, of a charged particle is determined solely
by its mass-to-charge ratio. Using Fourier analysis, the frequencies
can be resolved into a sum of pure sinusoidal curves with given
frequencies and amplitudes. The frequencies correspond to the
mass-to-charge ratios and the amplitudes correspond to the con-
centrations of the compounds in the analyte. FT-ICR MS is known
for high mass resolution, with separation thresholds on the order
of 10−3 Daltons (Da) or better [13,14].

As an application of the methods developed in Section 2, we
use them on two MALDI FT-ICR spectra, one of which is a “noise”
spectrum – one created with no analyte or matrix, pictured in
Fig. 2 – and the other of which was prepared for a cancer study
[15] with human blood serum as the analyte. The spectra analyzed
in this article were recorded in the Lebrilla lab in the Chemistry
Department at the University of California at Davis on an external

source MALDI FT-ICR instrument (HiResMALDI, IonSpec Corpora-
tion, Irvine, CA) equipped with a 7.0 T superconducting magnet and
a pulsed Nd:YAG laser 355 nm. The serum sample was collected at
the University of California at Davis Cancer Center; the patient gave
written informed consent under an IRB-approved protocol.
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still consistently underestimating the baseline. Furthermore, in the
noise spectrum the bias increases in absolute value as the frequency
decreases. The running Tukey’s biweight underestimates the run-
ning means by a fairly consistent amount (although by less than the
ig. 2. A typical noise spectrum. The spike extending off the top of the picture is actu
f approximately 222.7 and 95.4, respectively.

The BXR algorithm is especially suited to analyzing MALDI FT-
CR spectra because of the following property, first observed in
arkauskas et al. [12]: the data obtained by dividing the noise por-
ion of a MALDI FT-ICR spectrum by the expected value at each point
an be closely modeled by a causal and invertible autoregressive,
oving-average time series with generalized gamma innovations.

hus, identifying the mean level of the noise determines the entire
istribution of the noise, which leads to a nice method for identi-
ying peaks in a MALDI FT-ICR spectrum as either noise or signal.

It follows that if we consider the random variables Y ′
t = Yt/EYt ,

hen {Y ′
t} should be identically distributed with mean 1. (Note

hat {Y ′
t} are not independent; the autocorrelation function is non-

rivial.) Thus, we get

{(EYt − Yt)+} = EYt · E{(1 − Y ′
t)+}.

sing the spectrum in Fig. 2 as {Yt} (and running means to esti-
ate {EYt}) gives us E{(1 − Y ′

t)+} = 0.2100706. For each iteration

e can use the currently estimated value of the baseline b̂t as an
stimate for EYt , so we see that for this spectrum we should use
2,t = 1/0.4201412b̂t . Similarly, to obtain an appropriate value of
t , we observe that since the standard deviation of Y ′

t estimated
rom the spectrum is 0.522659, we can use �t = 0.522659b̂t .

To choose an appropriate value of A∗
1, we tried values of 10−j

or j = 10, . . . , 13 and found that the value of Var(b)/Var(y) was
losest to the eventual value of the ACF of the noise spectrum when
log10A∗

1 ≈ 10.855 (see Fig. 3).
For each of the two spectra, we calculated the baseline using

our methods: a running Tukey’s biweight with K = 9 and band-
idth 8001; and the BXR algorithm with A∗

1 = 10−10.855 and A2,t

hosen to be one of the three choices �−1
√

�/2 (the “iid normal

ethod”, which is just Xi and Rocke’s original algorithm), or 1(b̂t >

t)/(b̂t − yt) (the “distribution-free method”), or 1/0.4201412b̂t

the “distribution-specific method”), where b̂t is the current esti-
ate of the baseline at point t. For the first two choices of A2,t we

sed �t calculated in the same way as for the simulated data in
ection 2.3; for the last choice of A2,t , we used �t = 0.522659b̂t .
e then computed the ratio of each of the estimated baselines to

running means estimate.
For the noise spectrum, we used running means with bandwidth

001. The noise spectrum has two spikes at frequencies of 41.21 and
2.21 kHz which extend upward to intensities of approximately
22.7 and 95.4, respectively, and are apparently instrumental noise

they have no isotope peaks; if they were real compounds, the iso-
ope peaks should be easily large enough to show above the noise).
n the calculation of the running means, we set the values of the
pectrum at frequencies corresponding to these two peaks to be
issing.
wo peaks at frequencies of 41.21 and 42.21 kHz which extend upward to intensities

For the serum spectrum, the presence of multiple large peaks
would badly skew the running means. To get a reasonable estimate
of the running means of the noise portion of the spectrum, we used
a baseline calculated using the BXR algorithm with parameters A1,t

and A2,t as for the noise spectrum and set the values of the spec-
trum at frequencies corresponding to any peak that reaches at least
3.7996 times higher than that to be missing. (From simulations of
noise spectra, this is approximately equivalent to taking 4.5 stan-
dard deviations above the mean for iid normal data.) We then used
running means with bandwidth 8001.

The results for the noise spectrum are displayed in Fig. 4, and the
results for the serum spectrum are displayed in Fig. 5. Note that each
algorithm performs similarly for both spectra. Specifically, the iid
normal method underestimates the baseline for small frequencies
(where the noise variance is large) and overestimates the base-
line for large frequencies (where the noise variance is small), as
expected. The distribution-free method does much better, but is
Fig. 3. Value of Var (b)/Var(y) for baselines estimated from the noise spectrum in
Fig. 2 using various choices of smoothing parameter A∗

1. The solid line is the least-
squares fit parabola for the data points, and the horizontal dashed line is the eventual
value of the ACF of the spectrum.
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Fig. 4. Ratio of estimated baselines over running means (bandwidth 8001) for noise spectrum.

Fig. 5. Ratio of estimated baselines over running means (bandwidth 8001) for serum spectrum.



196 D.A. Barkauskas, D.M. Rocke / Analytica C

F
(

d
c
F
s

M
r
t
T
p
a
a
r
p
a
t
t
m
s
w
t
r

l
(

e
l

F
(

ig. 6. Estimated baselines for noise spectrum calculated using BXR (top) and LMS
bottom) algorithms.

istribution-free method), which is not surprising, since a simple
alculation shows that the distribution of the noise is right-skewed.
inally, we see that the baseline estimated using the distribution-
pecific parameters is (on average) unbiased.

Thus, applying the distribution-specific BXR algorithm to a
ALDI FT-ICR spectrum is roughly equivalent to simply calculating

unning means for the noise portion of that spectrum. However,
he BXR algorithm has two main advantages over running means.
he first is speed: the BXR algorithm uses roughly half the com-
uting time of the running means. (Of course, optimizing each
lgorithm could change this. Also, as noted in Yang et al. [16], even
side from issues of algorithm optimization, running times are only
eally comparable for programs in the same language. Thus, com-
aring run times of various algorithms should only be considered as
rough guideline.) More importantly, the negativity penalty A2,t in

he BXR algorithm only comes into play when the baseline is above
he data. If the data is above the baseline, it doesn’t matter by how

uch. Thus, the extremely large values in a spectrum which con-
titute the signal are automatically ignored by the BXR algorithm,
hile extra work is needed to ignore the signal when calculating

he running means (as we had to do above in the estimation of the
unning means for the serum spectrum).

This is even more clearly illustrated by a comparison of base-

ines computed by the BXR algorithm and the LMS algorithm
Figs. 6 and 7).

Note that for the noise spectrum, the two baselines are
xtremely close to each other, except for an apparent edge effect at
ow frequencies for the LMS algorithm. In fact, except near the peak

ig. 7. Estimated baselines for serum spectrum calculated using BXR (top) and LMS
bottom) algorithms.
himica Acta 657 (2010) 191–197

and at the low frequency edge, the estimates never differ by more
than ±5%. However, in the areas of the serum spectrum that have
signal, the estimate from the LMS algorithm is pulled up toward the
signal drastically, reaching up to more than three times as high as
the BXR estimate. In the areas with little or no signal (frequencies
greater than 100 kHz), the LMS and BXR estimates are still within
±5% of each other. While there is a mild inflation of the baseline in
the presence of signal in the BXR algorithm, it is only inflated up
to 13% larger than the estimated baseline for the noise spectrum.
Thus, it is clear that the BXR algorithm is far less sensitive to the
presence of signal than the LMS algorithm.

4. Future directions

One obvious question is how many of the results in this article
are due to the particular experimental setup used to generate the
spectra analyzed in this article and how many can be generalized.
One encouraging sign is that the coefficients obtained in Section 3
are consistent in replicates; for a set of 56 noise spectra similar to
the one displayed in Fig. 2, the estimated values of E{(1 − Y ′

t)+} had
a mean of 0.210011 and a standard deviation of 2.46 × 10−4, while
the estimated values for the standard deviation of Y ′

t had a mean of
0.522584 and a standard deviation of 6.36 × 10−4. Thus, it would
seem to be justified to use the mean values of the two parameters
for analyses on any spectrum generated on the same MALDI FT-
ICR machine rather than having to calculate them individually for
each spectrum. Whether or not these same numbers would apply
to other MALDI FT-ICR machines is unknown, but it seems likely
that at the very worst, each experimenter could use the techniques
described in this article to determine the appropriate numbers for
his or her experimental setup and use those.

Additionally, we have concentrated on the case the estimated
quantity is EYt because that is the key quantity in MALDI FT-ICR
MS. However, any measure of center g(Yt) which is homogeneous
of degree 1 (i.e., g(cYt) = c · g(Yt)) can be used instead. For example,
replacing g(Yt) = EYt with g(Yt) = median(Yt) in the calculations
for the noise spectrum from Fig. 2 gives us �t = 0.5570115b̂t and
A2,t = 1/0.3796328b̂t . Plotting the ratio of the result of running the
BXR algorithm with these parameters to the running median with
bandwidth 8001 gives a picture that is virtually identical to the
distribution-specific panel of Fig. 4.

Several variants of the BXR algorithm could be useful. One possi-
bility is to try penalizing different order derivatives rather than the
second. This would involve changing �2 by changing M2. For exam-
ple, if we wanted to penalize large values of the fourth derivative,
we could use �4 = M ′

4A1M4, where

M4 =

⎡
⎢⎢⎣

1 −4 6 −4 1 0 0 0
0 1 −4 6 −4 1 0 0 · · ·
0 0 1 −4 6 −4 1 0

...
. . .

⎤
⎥⎥⎦ (6)

is (n − 4) × n (and A1 would then be (n − 4) × (n − 4)). As in Sec-
tion 2.2, the resulting Hessian is almost certainly negative definite
(unless the baseline is below all but at most three points of the spec-
trum). However, it appears to be difficult to adequately smooth the
spectrum in this way, since using a large enough A∗

1 to get a rea-
sonably smooth estimate causes the Hessian to be computationally
singular.

Another variant would be to allow A∗
1 to depend on t. Especially

with MALDI FT-ICR spectra – which each show a large spike in base-

line and variance near 53.75 kHz – it might be useful to incorporate
A∗

1,t into the formula, with an appropriate adjustment to �2.
A third possibility would be to allow the matrix N from Eq. (2)

to be non-diagonal. This is an especially attractive idea in light of
the non-trivial autocorrelation of MALDI FT-ICR spectra.
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A fourth possibility is to extend the score function to cases where
he masses are not equally spaced. Although in MALDI FT-ICR MS we
an use the frequencies as equally spaced data, it is certainly possi-
le that there are (or will be) technologies which will not generate
qually spaced data.

We also observe that in deriving the appropriate values for A1,t

nd A2,t to calculate a baseline, it was assumed that a baseline had
lready been estimated, which is obviously problematic in applica-
ions. This suggests an iterative process, where an initial baseline
stimate is found (for example, by using the distribution-free BXR
lgorithm), then A1,t and A2,t are estimated using this baseline. The
ew values of A1,t and A2,t can then be used to re-estimate the base-

ine using the distribution-specific BXR algorithm, which will lead
o new parameters, etc. In simulations, it appears this process does,
n fact, converge to a stable result.

Finally, we note that although the BXR algorithm has been
eveloped for one-dimensional data, the same principles should
e applicable to higher-dimensional data, such as data generated
y liquid chromatography mass spectrometry.

. Funding

This work was supported by the National Human Genome
esearch Institute (R01-HG003352); National Institute of Envi-
onmental Health Sciences Superfund (P42-ES04699); National
nstitutes of Health Training Program in Biomolecular Technology
2-T32-GM08799 to DAB); and the Ovarian Cancer Research Fund.

cknowledgments

The authors would like to thank Scott Kronewitter and Carlito
ebrilla (University of California at Davis, Department of Chemistry)
or providing the MALDI FT-ICR spectra used in Section 3 and Ralph
e Vere White (University of California at Davis Cancer Center, Divi-
ion of Urology) for providing the serum sample used to generate
he serum spectrum.
eferences

[1] Y. Xi, D. Rocke, Baseline correction for NMR spectroscopic metabolomics data
analysis, BMC Bioinf. 9 (1) (2008) 324.

[

himica Acta 657 (2010) 191–197 197

[2] K.R. Coombes, S. Tsavachidis, J. Morris, K. Baggerly, M.-C. Hung, H. Kuerer,
Improved peak detection and quantification of mass spectrometry data
acquired from surface-enhanced laser desorption and ionization by denoising
spectra with the undecimated discrete wavelet transform, Proteomics 5 (16)
(2005) 4107–4117.

[3] P. Du, R. Sudha, M.B. Prystowsky, R.H. Angeletti, Data reduction of isotope-
resolved LC–MS spectra, Bioinformatics 23 (11) (2007) 1394–1400.

[4] D. Mantini, F. Petrucci, D. Pieragostino, P. Del Boccio, M. Di Nicola, C. Di Ilio, G.
Federici, P. Sacchetta, S. Comani, A. Urbani, LIMPIC: a computational method
for the separation of protein MALDI-TOF-MS signals from noise, BMC Bioinf. 8
(1) (2007) 101.

[5] Y.V. Karpievitch, E.G. Hill, A.J. Smolka, J.S. Morris, K.R. Coombes, K.A. Baggerly,
J.S. Almeida, PrepMS: TOF MS data graphical preprocessing tool, Bioinformatics
23 (2) (2007) 264–265.

[6] X. Li, R. Gentleman, X. Lu, Q. Shi, J.D. Iglehart, L. Harris, A. Miron, Proteomics
spectra, in: R. Gentleman, V. Carey, W. Huber, R. Irizarry, S. Dudoit (Eds.),
Bioinformatics and Computational Biology Solutions Using R and Bioconductor,
Springer, 2005, pp. 91–109.

[7] M. Bellew, M. Coram, M. Fitzgibbon, M. Igra, T. Randolph, P. Wang, D. May, J.
Eng, R. Fang, C. Lin, J. Chen, D. Goodlett, J. Whiteaker, A. Paulovich, M. McIn-
tosh, A suite of algorithms for the comprehensive analysis of complex protein
mixtures using high-resolution LC–MS, Bioinformatics 22 (15) (2006) 1902–
1909.

[8] Y. Yasui, M. Pepe, M.L. Thompson, B.-L. Adam, J. Wright, L. George, Y. Qu, J.D.
Potter, M. Winget, M. Thornquist, Z. Feng, A data-analytic strategy for protein
biomarker discovery: profiling of high-dimensional proteomic data for cancer
detection, Biostatastics 4 (3) (2003) 449–463.

[9] P. Du, W.A. Kibbe, S.M. Lin, Improved peak detection in mass spectrum by
incorporating continuous wavelet transform-based pattern matching, Bioin-
formatics 22 (17) (2006) 2059–2065.

10] E. Lange, C. Gröpl, K. Reinert, O. Kohlbacher, A. Hildebrandt, High-accuracy peak
picking of proteomics data using wavelet techniques, Pac. Symp. Biocomput.
11 (2006) 243–254.

11] L.-K. Zhang, D. Rempel, B.N. Pramanik, M.L. Gross, Accurate mass measurements
by Fourier transform mass spectrometry, Mass Spectrom. Rev. 24 (2) (2005)
286–309.

12] D.A. Barkauskas, S.R. Kronewitter, C.B. Lebrilla, D.M. Rocke, Analysis of MALDI
FT-ICR mass spectrometry data: A time series approach, Anal. Chim. Acta 648
(2) (2009) 207–214.

13] C.G. Herbert, R.A.W. Johnstone, Mass Spectrometry Basics, CRC Press, Boca
Raton, FL, 2003.

14] Y. Park, C.B. Lebrilla, Application of Fourier transform ion cyclotron resonance
mass spectrometry to oligosaccharides, Mass Spectrom. Rev. 24 (2) (2005)
232–264.
data, Bioinformatics 25 (2) (2009) 251–257.
16] C. Yang, Z. He, W. Yu, Comparison of public peak detection algorithms for MALDI

mass spectrometry data analysis, BMC Bioinf. 10 (1) (2009) 4.


	A general-purpose baseline estimation algorithm for spectroscopic data
	Introduction
	Methods
	What is a baseline?
	The BXR algorithm
	Calculating A1,t and A2,t

	Application to MALDI FT-ICR MS data
	Future directions
	Funding
	Acknowledgments
	References


